A New Point Process Regression Extreme Model Using a Dirichlet Process Mixture of Weibull Distribution

نویسندگان

چکیده

The extreme value theory is widely used in economic and environmental domains, it aims to study the stochastic behaviors associated with rare events. In this context, we consider a new mixture model for extremal events analysis, including Dirichlet process of Weibull (DPMW) distribution below threshold point (PP) upper tail. This developed regression structure PP parameters, which explains variation exceedance through all tail parameters. estimation parameters performed under Bayesian paradigm, applying Markov chains Monte Carlo (MCMC) method. applied both simulation real data demonstrate performance extrapolating

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Switching Dirichlet Process Mixture Regression

Markov switching models can be used to study heterogeneous populations that are observed over time. This paper explores modeling the group characteristics nonparametrically, under both homogeneous and nonhomogeneous Markov switching for group probabilities. The model formulation involves a finite mixture of conditionally independent Dirichlet process mixtures, with a Markov chain defining the m...

متن کامل

The Dirichlet Process Mixture (DPM) Model

The Dirichlet distribution forms our first step toward understanding the DPM model. The Dirichlet distribution is a multi-parameter generalization of the Beta distribution and defines a distribution over distributions, i.e. the result of sampling a Dirichlet is a distribution on some discrete probability space. Let Θ = {θ1,θ2, . . . ,θn} be a probability distribution on the discrete space = { 1...

متن کامل

Dirichlet Process Mixture Model with Spatial Constraints

Dirichlet process (DP) provides a nonparametric prior for the mixture model that allows for the automatic detection of the number of hidden states. Recent introduction of variational Bayesian (VB) inference as a deterministic approach makes it practical to large-scale realworld problems. However, the models proposed so far have intrinsic limitations when used on noisy datasets and in situations...

متن کامل

Stylometric Analyses using Dirichlet Process Mixture Models

Stylometry refers to the statistical analysis of literary style of authors based on the characteristics of expression in their writings. We propose an approach to stylometry based on a Bayesian Dirichlet process mixture model using multinomial word frequency data. The parameters of the multinomial distribution of word frequency data are the “word prints” of the author. Our approach is based on ...

متن کامل

Bayesian Nonparametric Reliability Analysis Using Dirichlet Process Mixture Model

Cheng, Nan, M.S., August 2011, Industrial and Systems Engineering Bayesian Nonparametric Reliability Analysis Using Dirichlet Process Mixture Model Director of Thesis: Tao Yuan This thesis develops a Bayesian nonparametric method based on Dirichlet Process Mixture Model (DPMM) and Markov chain Monte Carlo (MCMC) simulation algorithms to analyze non-repairable reliability lifetime data. Kernel d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10203781